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By
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ABSTRACT

The terminal orbit insertion guidance maneuver for the Voyager
mission was investigated. The study consists of two parts, the first
a comparison of four types of possible guidance laws in terms of
propellant efficiency with an optimum thrust program, the second an
analysis of the accuracy characteristics of two of these schemes.
This analysis was done by introducing navigation and implementation
errors into these two guidance laws and observing the resulting
error in the parameters of the terminal orbit. The gravity-turn law
and constant direction in inertial space law,which compared favorably
with the optimum thrust program, were chosen from part one to be used
in part two. Both laws responded adequately to the induced errors
without critical results. It was concluded that the preferred law
would probably be the constant inertial law because it is the easier
to mechanize.
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TECHNICAL MEMORANDUM X-53601

A PRELIMINARY ANALYSIS OF ORBIT INSERTION
GUIDANCE FOR THE VOYAGER MISSION

SUMMARY

The terminal orbit insertion guidance maneuver for the Voyager
mission was investigated. The study consists of two parts, the first
a comparison of four types of possible guidance laws in terms of
propellant efficiency with an optimum thrust program, the second an
analysis of the accuracy characteristics of two of these schemes. This
analysis was done by introducing navigation and implementation errors
into these two guidance laws and observing the resulting error in the
parameters of the terminal orbit. The gravity-turn law and constant
direction in inertial space law,which compared favorably with the
optimum thrust program, were chosen from part one to be used in part
two. Both laws responded adequately to the induced errors without
critical results. It was concluded that the preferred law would
probably be the constant inertial law because it is the easier to
mechanize.

I. INTRODUCTION

With the rapid advent of more ambitious interplanetary space
missions, the guidance mode required for the transfer from an approach
hyperbola to an elliptical orbit about a planet needs additional
consideration. This study, which concerns such an investigation, also
serves in part to verify the results of previous work done in this area.

The first part of this study is concerned with the question of what
guidance laws are feasible in terms of propellant requirements for
insertion into a terminal orbit about Mars. In an attempt to answer
this question, a two-dimensional analysis was made by comparing the
payload and AV losses for each of four types of guidance laws with an
optimum thrust program. The second part is an error analysis and an
accuracy study for two of these laws applied to orbit insertion guidance.
Each of these two laws was simulated in a two-dimensional analysis with
induced navigation and implementation errors, and the resulting errors
in the parameters of the terminal ellipse were observed. A gravity-turn
law and a constant direction fixed in inertial space law were selected
from the first part to be used as the guidance laws in the error analysis.



The results of the first part of the study show that the gravity-turn
law gives the minimum losses with respect to the optimum thrust program.
However, because of the short-burn arc, all three non-optimum guidance laws
compare very favorably with the optimum thrust program. The error analysis
shows that both laws have particular errors which they tolerate better than
the other so that one may be considered just as accurate as the other.

The problem then is reduced to a matter of judgement, the deciding factor
being the ease with which the guidance law can be mechanized.

II. GENERAL DISCUSSION

This report seeks to investigate, not in a highly sophisticated
study but rather in a simple yet informative type of study, two principal
questions:

(1) Can a guidance law be found which is easy to
mechanize and still be feasible in terms of
propellant used for insertion into a terminal orbit?

(2) If found, can such a law provide the necessary
accuracy for the mission?

The methods of approach and the answers to these two questions are given
in the following discussions.

A, COMPARISON OF GUIDANCE LAWS

For this phase of the study, the four thrust-vector pointing
laws used are described as follows:

(1) The calculus of variations optimum thrust program

(2) Gravity-turn (the thrust-vector reverse and collinear
to the velocity vector)

(3) Constant direction in inertial space

(4) Constant local pitch (the thrust-vector perpendicular
to the instantaneous radius vector).

For the entire study a nominal elliptical orbit of 1,000 by 10,000
kilometers was chosen. Other pertinent data for the study may be found
in Table 1. The nominal point of insertion into the elliptical orbit
was chosen to be periapsis, and the C; for the nominal hyperbola was
chosen to be 10.356184 km®/sec”.




Trajectories for each guidance law were generated by starting at
periapsis on the ellipse and integrating backward until the C; (twice
the energy per unit mass) corresponding to the approach hyperbola was
reached.

The minimum velocity transfer for each guidance law was found by
biasing each law by plus and minus a few degrees until a minimum time
was found. The AV losses of the guidance law are defined to be the
minimum velocity transfer minus the minimum velocity required for the
optimum thrust program (see Table 2).

B. ERROR ANALYSIS

The propellant efficiency study shows that the gravity-turn
law and the constant inertial law compared most favorably with the
optimum program. These two laws then were chosen for investigation to
determine how accurately the desired orbit is achieved when errors are
induced into the system. The four sources of errors considered are
listed as follows:

(1) Errors in the magnitude of the impact parameter (B)
(see Figure 1).

(2) Errors in the time of encounter with the planet (in this
case Mars).

(3) Errors in the parallel component of the specified
velocity increment.

(4) Errors in the normal component of the specified
velocity increment.

The parameters investigated with the simulation of these errors
are the changes in the radius of periapsis and apoapsis and the
argument of periapsis (w) of the nominal ellipse.

To simulate the error in the magnitude of the impact parameter (B),
it was necessary to derive a relationship between B and the radius
vector to the nominal point for starting the retro-burn into the
elliptical orbit. In essence, then, an error in the magnitude of B
results in an error at arrival at the correct position of the nominal
starting point for the retro-burn. The results of these errors are
shown in Figures 2 and 2A.

In simulating the errors in the time of encounter (the time at
which the spacecraft arrives at periapsis of the approach hyperbola
without terminal thrusting), it was assumed that a time error between the



nominal starting point for retro-burn and the time of encounter maps

over 1 to 1. Therefore, to have a resulting error of 30 seconds in the
time of encounter, it would be necessary to vary by 30 seconds the time
to begin the retro-burn. The resulting changes in the nominal elliptical
orbit caused by errors in the time of encounter are shown in Figures 3
and 3A.

To induce a velocity error in the parallel component of the specified
velocity increment, it was necessary to start at the nominal starting
point for the retro-burn and vary the thrust magnitude by certain
percentages. Then, at cutoff time (insertion point) the resulting velocity
errors can be interpreted. Errors in the parallel component of velocity
were taken to correspond with certain allowable percentages of the total
specified retro-velocity increment. Figures 4 and 4A show the changes
in the parameters of the nominal elliptical orbit versus percent changes
in thrust magnitude,.

Errors in the normal component of the specified velocity increment
were simulated by thrust misalignment. The thrust-vector at the nominal
starting point for retro-burn was misaligned in varying directions to
induce some velocity in the normal component, which is zero under nominal
conditions at the insertion point. The errors in the normal component
were again taken to be certain allowable percentages of the total
specified retro-velocity increment. These errors then are represented
by errors in the pointing of the thrust-vector as shown in Figures 5 and 5A,

Tables 3 and 4, which show the results taken from the graphs,
correspond, respectively, to the maximum allowable errors (navigation
and implementation errors) and the design goal errors specified for the
Voyager mission in Reference 1. These tables also compare the gravity-
turn law and the constant inertial guidance law to determine which would
give the more accurate orbit under the influence of the simulated errors.
Here again periapsis, apoapsis, and argument of periapsis are the
pertinent parameters that are compared.

ITI. CONCLUSIONS

Many observations may be made from this study. First, for the
Voyager mission, it would seem that the navigation and implementation
errors as specified by the range of allowable and design goal errors
are within the capabilities of both the gravity-turn law and constant
inertial guidance law. It was observed that periapsis never falls
below 630 kilometers for any of the maximum allowable errors; thus,
it is well above the minimum altitude of the 500 kilometers required
for quarantine purposes.




Second, the analysis of the guidance laws indicates that an easily
mechanized guidance law is sufficient to perform the insertion maneuver
in a near-optimum fashion. The optimum thrust program gives the best
results, but it is very difficult and costly to mechanize. The gravity-
turn law gives results very close to optimum, but it is also difficult
to mechanize since the direction of the instantaneous velocity vector in
inertial space must always be known. The constant direction in inertial
space gives the next best results (see Table 2), which are not too far
from optimum. This law is the more easily mechanized system, and since
it gives approximately the same accuracies in the error analysis, it
would probably be preferable. The constant local pitch scheme results
in the highest performance losses.

Third, the design and maximum allowable errors seem to be
tolerated by the guidance laws without any critical results. Other
studies have suggested that a loose insertion orbit about Mars which
will be compensated for by orbit trim maneuvers will be allowed. If
this be the case, then this study indicates that the magnitude of the
required retro-velocity insertion increment for our nominal orbit may
be sufficiently controlled by a timer to effect capture rather than
by an accelerometer for terminating the braking thrust.
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TABLE 1

Radius of Mars
Gravitation Constant for Mars

C; of Approach Hyperbola

3400 km
42883 km® /sec?

10.356184 km® /sec®

Periapsis Altitude of Nominal Ellipse 1000 km
Apoapsis Altitude of Nominal Ellipse 10,000 km
Thrust 7750 1bs
Specific Impulse 300 sec.
Weight in Terminal Orbit 11,400 1bs
Nominal Burn Time 330 sec.
TABLE 2
Guidance Minimum Guidance Law Mass
Law Transfer Losses Fraction
(m/s) (m/s) (We/Wy)
Impulsive 1632.7 N/A .57934
Optimum Thrust Program 1637.2 0 .57320
Gravity-Turn 1637.3 .1 .57318
Constant Inertial Direction| 1638.6 1.3 .57296
Constant Local Pitch 1640.6 .57257
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